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Characterization of soliton damping in the granular chain under gravity
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Seoul 151-742, Korea
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A soliton created in the horizontal granular chain damps due to gravity in the vertical chain. We show that
there are two types of propagating modes, quasisolitary and oscillatory, in the vertical chain, depending on the
strength of impulse. We find that the type of damping is a power law in depth or time. We also find that the
absolute value of the exponent of the power law decreases as the strength of the initial impulse increases in the
quasisolitary regime. In the oscillatory regime, however, in which the initial impulse is weak, the power-law
exponent is independent of the strength of the initial impulse. We show that the power-law damping is caused
by the gravitation which results in the change of the force constant at each contact.

PACS number~s!: 45.70.2n, 46.40.Cd, 02.70.Ns, 43.25.1y
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The dynamics of granular materials are very useful
many applications@1,2# and important as a new emergin
area of physics. In addition to interesting properties, such
hydrodynamic flow, pattern formation, and clustering@3#, the
study of the propagation of sound or elastic impulse in
granular medium is also useful and interesting@4,5# in con-
nection with obtaining information inside the granular m
dium. The granular chain with the nonlinear Hertzian cont
@6# has been studied by Nesterenko@7#, who showed that the
propagating mode of the initial impulse in a highly nonline
regime is a soliton. The solitonlike behavior of the signal
two-dimensional granular beds has been studied numeric
by Sinkovits and Sen@8,9#. The properties of a solitary sig
nal in the chain of iron balls have been examined experim
tally by Costeet al. @10# recently.

Recently, MacKay@11# proved the existence of solitar
waves in the horizontal Hertzian chain using a rather gen
mathematical theorem given by Friesecke and Wattis@12#.
This theorem is applied to the equation of motionq̈n
5V8(fn)2V8(fn21) where fn5qn112qn , but is re-
stricted to the one-dimensional lattice. The proof of MacK
may be compared with that of Nesterenko, who used
Taylor expansion to get the soliton equation of motion
the highly nonlinear regime. Even though the geometri
effect @13# may be important in a real situation, the on
dimensional granular system rather easily shows the fun
mental physics existing in the nonlinear granular chain.

Recently, Senet al. @14# performed an interesting stud
on the propagation and the backscattering of the elastic
nal in the Hertzian chain under gravity. This work sugges
a possible way to detect a buried impurity using a solitonl
wave. A fundamental study has been done by Honget al.
@15#, who have shown analytically the existence of t
power-law behaviors of the signal propagating down
gravitationally compacted granular chain with arbitra
power-law type contact force. That work was restricted to
so-called oscillating regime which is achieved by weak i
pulses. But some interesting things still remain in examin
the extended regime of impulse in the nonlinear granu
chain under gravity.

The gravity effect is essential in dispersing the soliton
the gravitationally compacted chain. An interesting disco
ery we make is that a solitary wave created in the horizo
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chain damps under the effect of gravity and the type
damping is a power-law type. We find that the dep
dependent power-law behavior of the propagating signa
generic for the whole range of strength of the impulse. T
power-law exponent depends on the strength of the imp
when the power-law type of the contact force law of t
grain has been determined. The impulse-dependent beha
of the power-law exponent shows interesting features.
rather strong impulses, the absolute value of the power-
exponent decreases, i.e., the signal becomes more solita
the initial impulse increases. This phenomenon is underst
as follows. The role of gravity becomes negligible as t
impulse becomes stronger. The state under strong impul
similar to that of the horizontal chain in which a soliton
the propagating mode@7,11#. In fact, the propagating mod
of a strong impulse under gravity is quite similar to that o
soliton in the horizontal chain except for damping. The
fore, we call this mode the quasisoliton or the quasisolit
wave.

An interesting phenomenon we discover in this work
that the absolute value of the power-law exponent increa
and approaches a saturated value as the strength of the i
impulse decreases. The propagating mode in this regim
oscillatory and we call this the oscillatory regime. Th
power-law exponents are the same for different strength
impulse in the oscillatory regime. A previous work@15#
showed impulse-independent power laws for the limit
small oscillation. The power-law behaviors in both quasiso
tary and oscillatory regimes have never been studied in o
works as far as we know.

The special feature of the system under consideration
two aspects. One is the nonlinear contact force and the o
is the effect of gravity. The former is common to both ho
zontal and vertical granular chains, while the latter is a ch
acteristic of the vertical chain. We study the propagat
properties in the quasisolitary regime where the soliton s
fers damping due to gravity. We analyze how the grav
affects soliton propagation when the gravity is introduced
the vertical granular chain. Even though the previous w
@15# has shown the power-law behaviors in the small os
lation limit, it is not clear why the power-law behaviors a
common in any strength of impulse in the vertical cha
964 ©2000 The American Physical Society



pa
ac

ti-
r

m
t
e

n

rla

in

en
ve

d
re

,
vit
,

.

fo
in

e
e
m
s

th
ain

e,
-

sing
city,

ill
in

he
x-
ig-
the
a

vior.

h.

ary-

ve-

der
ular
ve

PRE 61 965BRIEF REPORTS
This work may supply an understanding of the signal pro
gation in the vertical granular chain with a nonlinear cont
force.

In this work, we focus on the motion of grains in a ver
cal granular chain with a nonlinear contact force of arbitra
power-law type. It is usually hard to treat nonlinear proble
analytically, so we use molecular dynamics simulations
study the effect of gravity in the grain motion. We solv
numerically the equation of motion of a grain atzi which is
the distance from the top of the chain to the center of thei th
spherical grain, such as

mz̈n5h@$D02~zn2zn21!%p2$D02~zn112zn!%p#1mg,
~1!

wherem is the mass of the grain,D0 is the distance betwee
adjacent centers of the spherical grain,p is the exponent of
the power-law type contact force, andh is the elastic con-
stant of the grain under consideration. Therefore, the ove
between the adjacent grains atnth contact is dn5D0
2(zn112zn). We do not consider the plastic deformation
treating Eq.~1!. For the Hertzian chain, i.e.,p53/2, the
equation of motion comes from the Hertzian interaction
ergy between neighboring granular spheres which is gi
by @6#

V~dn!5
2

5D S RnRn11

Rn1Rn11
D 1/2

dn
5/2[bdn

5/2, ~2!

whereRn is the radius of the spherical grain and

D5
3

4 S 12sn
2

En
1

12sn11
2

En11
D , ~3!

where sn , sn11 and En , En11 are Poisson’s ratios an
Young’s moduli of the bodies at neighboring positions,
spectively@6#. Therefore,h5(5/2)b for the Hertzian chain.

To perform numerical simulations for Eq.~1!, we choose
a vertical chain ofN523103 grains. We choose 1025 m,
2.3631025 kg, and 1.010231023 s as the units of distance
mass, and time, respectively. These units gives the gra
tional accelerationg51 @14#. We set the grain diameter 100
mass 1, and the constantb of Eq. ~1! 5657 for the molecular
dynamics simulation. The equilibrium condition

mgn5hdn
p ~4!

has been used for the (n11)th grain of the vertical chain
Using the third-order Gear predictor-corrector algorithm@16#
as a calculational tool, we perform numerical simulations
p53/2 as an example. Even though the criterion for the
tial impulse neglecting the plastic deformation@10,17# and
viscoelastic dissipation to make Eqs.~1! and ~2! valid as a
model, we do not apply any restriction to the initial impuls
because it only plays the role of parameter for the solitarin
of the signal in this work. Therefore, we choose various i
pulses for our study and show the change of solitarines
the signal as the strength of impulse changes.

Figure 1 shows the snapshots of two typical types of
grain velocity signals propagating down the vertical ch
-
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with Hertzian contact. Figure 1~a! obtained for the initial
impulse velocityv i56 belongs to the quasisolitary regim
while Fig. 1~b! obtained forv i50.01 belongs to the oscilla
tory regime. The quasisolitary signal shown in Fig. 1~a! has
the same propagating characteristics, such as increa
propagating speed, dispersion, and decreasing grain velo
as those of oscillating signal in Fig. 1~b!. We plan to study
these properties of the quasisolitary signal in future; this w
require a great deal of work. We treat only grain velocities
both regimes in this work.

Figure 2~a! shows the depth-dependent behavior of t
leading grain velocity peaks for various initial impulses e
pressed by velocity. Both quasisolitary and oscillatory s
nals damp in power law with depth. One can see that
lower three,v i50.1, 0.01, and 0.001, corresponding to
weak impulse, have the same depth-dependent beha
This can be more clearly seen in Fig. 2~b!, which plots the
power-law exponents~negative! versus inversev i . The loga-
rithmic scale has been used for the abscissa of the grap

A remarkable feature is seen in Fig. 2~b!. That is, one can
separate the propagating behavior into two classes, the v
ing exponent regime ofv i.1 and the flat regime ofv i,1
where the exponent is21/4 @15# for the Hertzian chain. The
former corresponds to the quasisolitary regime where the
locity signal shown in Fig. 1~a! is a typical propagating

FIG. 1. Snapshots of typical modes of propagating signals un
strong and weak impulses in a gravitationally compacted gran
chain with Hertzian contact law. The program units of velocity ha
been used. The unit of depth is the number of grains.~a! Quasisoli-
tary mode due to strong impulsev i56. ~b! Oscillatory mode due to
weak impulsev i50.01.
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mode. The latter, on the other hand, corresponds to the
cillatory regime in which the velocity signal shown in Fig
1~b! is a typical propagating mode. Figure 2 shows that
damping of the signal becomes weaker and weaker as
initial impulse strengthens. This implies that the pulse ty
velocity signal created in the quasisolitary regime become
soliton in the limit of large impulse.

It is interesting to see the reason the power-law expon
is v i independent in the oscillatory regime, andv i dependent
in the quasisolitary regime. Sincev i determines the displace
ment of the signal, one may understand thev i dependence
and v i independence behavior by studying the role of d
placement in the equation of grain motion. For this purpo
we introduce a new variablecn , denoting the displacemen
of the nth grain from equilibrium, defined by

cn5zn2nD01(
l 51

n S mgl

h D 1/p

, ~5!

where the last term is the sum of overlaps up tonth contact
and we setz05c050. Equation~1! can be transformed into

FIG. 2. ~a! Depth-dependent behaviors of the leading veloc
peaks for variousv i . Data forv i50.1, 0.01, and 0.001 are ove
lapped.~b! The behavior of power-law exponents of the leadi
velocity peak for variousv i ’s. The ordinate is the absolute value
the exponent and the abscissa is the inverse ofv i in logarithmic
scale. Crosses are data points and the solid line is a guide fo
eye. The same units as Fig. 1 have been used.
s-

e
he
e
a

nt

-
,

mc̈n5hF S mgn

h D 1/p

1~cn212cn!G p

2hF H mg~n11!

h J 1/p

1~cn2cn11!G p

1mg ~6!

using Eq.~5!.
For the oscillatory regime, the condition

ucn212cnu!S mgn

h D 1/p

~7!

is valid and the expansion gives Eq.~6! as

mc̈n52mn~cn2cn21!1mn11~cn112cn!, ~8!

where mn5mpg(h/mg)1/pn12 1/p is the force constant o
nth contact. Both the left- and right-hand sides of Eq.~8! are
linear in cn . Therefore, the scaling analysis tells us that t
equation of motion~8! has nothing to do with the initia
impulsev i .

For the quasisolitary regime, however, the condition

~cn212cn!@S mgn

h D 1/p

~9!

is valid and the expansion gives Eq.~6! as

mc̈n5h@~cn212cn!p2~cn2cn11!p#

2hp@dn11~cn2cn11!p21

2dn~cn212cn!p21#1mg, ~10!

where dn5(mgn/h)1/p denotes the overlap atnth contact.
Different order ofcn in the left and right sides of Eq.~10!
implies thatv i dependence must appear in the signal char
teristics.

We now focus on the quasisolitary regime in which t
signal is described by Eq.~10!. This nonlinear differential
equation may not be solved analytically for an arbitraryp.
But one can appreciate the role of each term of Eq.~10!. The
first term on the right side of Eq.~10! which is the leading
term of the expansion is the same as the contact force of
horizontal chain in which a solitary wave is created und
strong enough impulse ifp.1. The existence of the solitar
wave in the horizontal granular chain forp.1 may be
proved by extending the work of MacKay@11# for p53/2 to
arbitrary p. This will be reported in a separate work@18#.
The second term, on the other hand, is the contact force
renormalized force constantph(mgn/h)1/p which is varying
at each contact of the horizontal chain with a nonlinear c
tact force. Since the effect of gravity is already immersed
the second term of Eq.~10! via changing variables of Eq.~5!,
the constantmg in the last term of Eq.~10! does not play a
crucial role under the condition of Eq.~9!. Therefore, one
can understand that the gravity nearly exhausts its role
changing the force constant at each contact.

We have shown analytically in the previous paper@15#
that the variation of the force constant at each contact yie
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the power-law damping in the signal propagation. This h
been performed in the limit of small oscillation regime a
the transformed equation of motion for displacement w
linear. We understand, therefore, that the power-law beh
ior does not result from the nonlinearity of the equation
motion but from the variation of force constant at each c
tact. Even though we may not draw the power-law behav
analytically from the second term of Eq.~10! for arbitraryp
because of its nonlinearity, it is clear from the above ar
ment that the second term is the only source of the pow
law behavior.

In conclusion, we have seen the types of damping of
signals going down the gravitationally compacted nonlin
chain in which the propagating feature is quite different fro
that of the horizontal chain where the soliton is the pro
gating mode. We find that there are two different regim
quasisolitary and oscillatory, in which the propagating ch
acteristics are different from each other and the power-
behavior in depth is a generic property appearing under g
ity. We have also seen that the effect of gravity compe
with that of impulse, i.e., a stronger impulse produces a m
solitary wave. In the quasisolitary or strong impulse regim
a solitary wave damps due to gravity in the form of a pow
,
-

.

y

s

s
v-
f
-
r

-
r-

e
r

-
,
-
w
v-
s

re
,
r

law in depth and the absolute value of the power-law ex
nent decreases as the initial impulse increases. In the o
latory or weak impulse regime, however, we observe that
power-law exponent approaches a saturated value as the
tial impulse weakens and the exponent becomes indepen
of the strength of the impulse eventually. The analy
scheme of the previous work@15# has been applied to thi
regime. As a final remark, we understand that the power-
damping of a solitary wave in depth is due to gravity, whi
induces the change in force constant at each contact in
vertical granular chain.

We did not provide a concrete analytical explanation
the role of the initial impulse, even though we provide n
merical results, such as Fig. 2. The amplitude of displa
ment, the length of signal, the peak grain velocity, and
propagating speed of the signal do depend on the streng
initial impulse in the quasisolitary regime. Analyzing the
in an analytical way requires more work. We plan to do th
in future.
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