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Characterization of soliton damping in the granular chain under gravity
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A soliton created in the horizontal granular chain damps due to gravity in the vertical chain. We show that
there are two types of propagating modes, quasisolitary and oscillatory, in the vertical chain, depending on the
strength of impulse. We find that the type of damping is a power law in depth or time. We also find that the
absolute value of the exponent of the power law decreases as the strength of the initial impulse increases in the
quasisolitary regime. In the oscillatory regime, however, in which the initial impulse is weak, the power-law
exponent is independent of the strength of the initial impulse. We show that the power-law damping is caused
by the gravitation which results in the change of the force constant at each contact.

PACS numbeps): 45.70—n, 46.40.Cd, 02.70.Ns, 43.25y

The dynamics of granular materials are very useful inchain damps under the effect of gravity and the type of
many applicationg1,2] and important as a new emerging damping is a power-law type. We find that the depth-
area of physics. In addition to interesting properties, such adependent power-law behavior of the propagating signal is
hydrodynamic flow, pattern formation, and clusterj8g the  generic for the whole range of strength of the impulse. The
study of the propagation of sound or elastic impulse in thepower-law exponent depends on the strength of the impulse
granular medium is also useful and interestjdgh] in con-  when the power-law type of the contact force law of the
nection with obtaining information inside the granular me-grain has been determined. The impulse-dependent behavior
dium. The granular chain with the nonlinear Hertzian contacpf the power-law exponent shows interesting features. For
[6] has been studied by Nestererfkg, who showed that the  rather strong impulses, the absolute value of the power-law
propagating mode of the initial impulse in a highly nonlinear exponent decreases, i.e., the signal becomes more solitary, as
regime is a soliton. The solitonlike behavior of the signal inthe initial impulse increases. This phenomenon is understood
two-dimensional granular beds has been studied numericallys foj10ws. The role of gravity becomes negligible as the

by Sinkovits and Sef8,9]. The properties of a solitary sig- jynise becomes stronger. The state under strong impulse is

nalin the chain of iron balls have been examined experimengjnijar to that of the horizontal chain in which a soliton is
tally by Costeet al. [10] recently.

Recently, MacKay[{11] proved the existence of solitary the propagating modg7, 11]. In fact, the propagating mode

waves in the horizontal Hertzian chain using a rather generaﬁf a strong impulse under gravity is quite similar to that of a

mathematical theorem given by Friesecke and Watt§. fsohton n ﬂ:le r?onzor;tal ﬁham excel.pt for dampmg..Thlgre-
This theorem is applied to the equation of motidy Ve;?/,ewe call this mode the quasisoliton or the quasisolitary
=V’ —V'(¢n-1) where ¢,=0,:1—0d,, but is re- n . . . . .
strict(ezﬁn'zo the(or?e-%j)imensiong)lnlatgge. The proof of MacKay An interesting phenomenon we discover in this _work IS
may be compared with that of Nesterenko, who used théhat the absolute value of the power-law exponent mcregge_s
Taylor expansion to get the soliton equation of motion forfand approaches a saturated value.as the strgngth of thg |n|t!al
the highly nonlinear regime. Even though the geometricaiMpPulse decreases. The propagating mode in this regime is
effect [13] may be important in a real situation, the one-0scillatory and we call this the oscillatory regime. The
dimensional granular system rather easily shows the funddrower-law exponents are the same for different strengths of
mental physics existing in the nonlinear granular chain. ~ impulse in the oscillatory regime. A previous wof5]
Recently, Seret al. [14] performed an interesting study showed impulse-independent power laws for the limit of
on the propagation and the backscattering of the elastic sigmall oscillation. The power-law behaviors in both quasisoli-
nal in the Hertzian chain under gravity. This work suggestedary and oscillatory regimes have never been studied in other
a possible way to detect a buried impurity using a solitonlikeworks as far as we know.
wave. A fundamental study has been done by Henhgl. The special feature of the system under consideration has
[15], who have shown analytically the existence of thetwo aspects. One is the nonlinear contact force and the other
power-law behaviors of the signal propagating down theis the effect of gravity. The former is common to both hori-
gravitationally compacted granular chain with arbitrary zontal and vertical granular chains, while the latter is a char-
power-law type contact force. That work was restricted to theacteristic of the vertical chain. We study the propagating
so-called oscillating regime which is achieved by weak im-properties in the quasisolitary regime where the soliton suf-
pulses. But some interesting things still remain in examiningers damping due to gravity. We analyze how the gravity
the extended regime of impulse in the nonlinear granulaaffects soliton propagation when the gravity is introduced in
chain under gravity. the vertical granular chain. Even though the previous work
The gravity effect is essential in dispersing the soliton in[15] has shown the power-law behaviors in the small oscil-
the gravitationally compacted chain. An interesting discov-ation limit, it is not clear why the power-law behaviors are
ery we make is that a solitary wave created in the horizontatommon in any strength of impulse in the vertical chain.
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This work may supply an understanding of the signal propa- @)
gation in the vertical granular chain with a nonlinear contact
force. 0 |

In this work, we focus on the motion of grains in a verti- P
cal granular chain with a nonlinear contact force of arbitrary e i i
power-law type. It is usually hard to treat nonlinear problems ; i
analytically, so we use molecular dynamics simulations to ; ! i
study the effect of gravity in the grain motion. We solve o ¢ ! |
numerically the equation of motion of a grainztwhich is 2t i v i
the distance from the top of the chain to the center ofithe
spherical grain, such as

velocity
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mz,= 77[{A0_ (zn— anl)}p_{AO_ (Zny1— Zn)}p] + mg'1 depth
D o
wherem is the mass of the grair is the distance between 00025 L A S S E—
adjacent centers of the spherical grginis the exponent of 0.002 C T
the power-law type contact force, anglis the elastic con- 0.0015 : |
stant of the grain under consideration. Therefore, the overlag 0.001
between the adjacent grains ath contact is §,=A4, 00005
—(z,+1—2,). We do not consider the plastic deformation in ‘§ 0
treating Eq.(1). For the Hertzian chain, i.ep=3/2, the ¢  -0.0005
equation of motion comes from the Hertzian interaction en- -0.001
ergy between neighboring granular spheres which is giver -0.0015
by [6] -0.002 .
-0.0025 |- i
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(00 =55 R+ Ry, 1 200 @ depth
whereR,, is the radius of the spherical grain and FIG. 1. Snapshots of typical modes of propagating signals under
strong and weak impulses in a gravitationally compacted granular
2 2 chain with Hertzian contact law. The program units of velocity have
D= §( 1-oq + 1-ohs 1) 3) been used. The unit of depth is the number of grai@sQuasisoli-
4\ E, Enir /)’ tary mode due to strong impulse= 6. (b) Oscillatory mode due to

weak impulsev;=0.01.
where o,, 0,41 and E,, E,,; are Poisson’s ratios and
Young's moduli of the bodies at neighboring positions, ré-yith Hertzian contact. Figure(4) obtained for the initial
spectively[6]. Therefore,n=(5/2)b for the Hertzian chain. jmnyise velocityv;=6 belongs to the quasisolitary regime,
To perform numerical sugulatlpns for E€L), we c%oose while Fig. 1(b) obtained forv;=0.01 belongs to the oscilla-
a vertical chain ofN=2x 10" grains. We choose 10m,  (ory regime. The quasisolitary signal shown in Figa)lhas
2.36x<10 kg, and 1.010210 s as the units of distance, the same propagating characteristics, such as increasing

mass, and time, respectively. These units gives the gravitasopagating speed, dispersion, and decreasing grain velocity,
tional acceleratio =1 [14]. We set the grain diameter 100, 55 those of oscillating signal in Fig(t). We plan to study

mass 1, and the constamf Eq. (1) 5657 for the molecular  hese properties of the quasisolitary signal in future; this will

dynamics simulation. The equilibrium condition require a great deal of work. We treat only grain velocities in
both regimes in this work.
mgn= 76" (4) Figure 2a) shows the depth-dependent behavior of the

leading grain velocity peaks for various initial impulses ex-

has been used for then{ 1)th grain of the vertical chain. pressed by velocity. Both quasisolitary and oscillatory sig-
Using the third-order Gear predictor-corrector algoriffid] ~ nals damp in power law with depth. One can see that the
as a calculational tool, we perform numerical simulations forlower three,v;=0.1, 0.01, and 0.001, corresponding to a
p=3/2 as an example. Even though the criterion for the ini-weak impulse, have the same depth-dependent behavior.
tial impulse neglecting the plastic deformatiph0,17 and  This can be more clearly seen in Figb®, which plots the
viscoelastic dissipation to make Eq4) and (2) valid as a  power-law exponent&egative versus inverse; . The loga-
model, we do not apply any restriction to the initial impulse, rithmic scale has been used for the abscissa of the graph.
because it only plays the role of parameter for the solitariness A remarkable feature is seen in Figb2 That is, one can
of the signal in this work. Therefore, we choose various im-separate the propagating behavior into two classes, the vary-
pulses for our study and show the change of solitariness dhg exponent regime of;>1 and the flat regime of;<1
the signal as the strength of impulse changes. where the exponent is 1/4[15] for the Hertzian chain. The

Figure 1 shows the snapshots of two typical types of thdormer corresponds to the quasisolitary regime where the ve-
grain velocity signals propagating down the vertical chainlocity signal shown in Fig. (8 is a typical propagating
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. mgn| P P mg(n+1))
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8 using Eq.(5).
‘i For the oscillatory regime, the condition
£
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"o 200 400 600 80(; t1hooo 1200 1400 1600 1800 is valid and the expansion gives E§) as
op
(b) _
0.3 T T T T T T T T M= — pwn(Pn—n-1) + sns1(Pne1— ¥n), 8
0.25 | where u,=mpg 7/mg)*Pn'~ ¥ is the force constant of
nth contact. Both the left- and right-hand sides of Bj.are
§ 02| linear in ¢, . Therefore, the scaling analysis tells us that the
g equation of motion(8) has nothing to do with the initial
g 018F impulsev; .
g For the quasisolitary regime, however, the condition
@ 0.1 |
1/p
0.05 |- mgn
(wnl_wn)>(7) (9)
0 ok 1 1 1 1 1 1
0.000001 0.0001 0.001 o.o1wio.1 1 10 100 1000 is valid and the expansion gives E6) as
FIG. 2. (a) Depth-dependent behaviors of the leading velocity o P p
peaks for various/; . Data forv;=0.1, 0.01, and 0.001 are over- M=l (dn-1=¥n)* = (¥n = ¥hn+2)"]
Iappe_d.(b) The behgwor 'of power-l_aw e>_<p0nents of the leading — p[ 8y 1(h— l/ln+l)p71
velocity peak for various;’s. The ordinate is the absolute value of
the exponent and the abscissa is the inverse;dh logarithmic = 80(Yn-1— )P ]+ mg, (10
scale. Crosses are data points and the solid line is a guide for the
eye. The same units as Fig. 1 have been used. where 8,= (mgn/ ) denotes the overlap aith contact.

Different order ofy, in the left and right sides of Eq10)
mode. The latter, on the other hand, corresponds to the odTPlies thatv; dependence must appear in the signal charac-
cillatory regime in which the velocity signal shown in Fig. terstics. o o .

1(b) is a typical propagating mode. Figure 2 shows that the W€ now focus on the quasisolitary regime in which the
damping of the signal becomes weaker and weaker as tr@gnal_ is described by Eq10). Thls_nonlmear dlffer_entlal
initial impulse strengthens. This implies that the pulse typefduation may not be solved analytically for an arbitrary
velocity signal created in the quasisolitary regime becomes BUt one can appreciate the role of each term of Q). The
soliton in the limit of large impulse. first term on the right side of Eq10) which is the leading

It is interesting to see the reason the power-law exponerf€'™M of the expansion is the same as the contact force of the

is v; independent in the oscillatory regime, anddependent horizontal chain in which a solitary wave is created under
in the quasisolitary regime. Sinee determines the displace- Strong enough impulse > 1. The existence of the solitary

ment of the signal, one may understand thedependence Wave in the horizontal granular chain f@r>1 may be
andv; independence behavior by studying the role of dis-Proved by extending the work of MacKag1] for p=3/2 to

placement in the equation of grain motion. For this purpose@rbitrary p. This will be reported in a separate wofk8].
we introduce a new variablg, , denoting the displacement 1he second term, on the other hand, is the contact force with

of the nth grain from equilibrium, defined by renormalized force consta_pby(mgn/n)”p which is v_arying
at each contact of the horizontal chain with a nonlinear con-
tact force. Since the effect of gravity is already immersed in
N the second term of E¢10) via changing variables of E¢5),
m_gl . ) the constanmgin the last term of Eq(10) does not play a
7 ' crucial role under the condition of Eq9). Therefore, one
can understand that the gravity nearly exhausts its role in
changing the force constant at each contact.
where the last term is the sum of overlaps umtb contact We have shown analytically in the previous pap&b]
and we setzy= io=0. Equation(1) can be transformed into that the variation of the force constant at each contact yields

n
1//n=zn—nA0+|21
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the power-law damping in the signal propagation. This hadaw in depth and the absolute value of the power-law expo-
been performed in the limit of small oscillation regime andnent decreases as the initial impulse increases. In the oscil-
the transformed equation of motion for displacement wasatory or weak impulse regime, however, we observe that the
linear. We understand, therefore, that the power-law behavpower-law exponent approaches a saturated value as the ini-
ior does not result from the nonlinearity of the equation oftjal impulse weakens and the exponent becomes independent
motion but from the variation of force constant at each conyf the strength of the impulse eventually. The analytic
tact. Even though we may not draw the power-law behaviogcheme of the previous woil5] has been applied to this
analytically from the second term of E(L0) for arbitraryp  regime. As a final remark, we understand that the power-law
because of its nonlinearity, _it is clear from the above argugamping of a solitary wave in depth is due to gravity, which
ment that the second term is the only source of the powerinqgyces the change in force constant at each contact in the
law behavior. , vertical granular chain.

_In conclusion, we have seen the types of damping of the \ye did not provide a concrete analytical explanation of
signals going down the gravitationally compacted nonlineakne role of the initial impulse, even though we provide nu-
chain in which the propagating feature is quite different frompmygrical results, such as Fig. 2. The amplitude of displace-
thajc of the horizont_al chain where the solitpn is the Propament, the length of signal, the peak grain velocity, and the
gating mode. We find that there are two different regimesy gpagating speed of the signal do depend on the strength of
quasisolitary and oscillatory, in which the propagating charipitial impulse in the quasisolitary regime. Analyzing these

acteristics are different from each other and the power-lawy gn analytical way requires more work. We plan to do this
behavior in depth is a generic property appearing under gravp, future.

ity. We have also seen that the effect of gravity competes

with that of impulse, i.e., a stronger impulse produces a more The authors wish to acknowledge the partial financial sup-
solitary wave. In the quasisolitary or strong impulse regimeport (Grant No. 1998-015-000055f the Korea Research

a solitary wave damps due to gravity in the form of a powerFoundation.
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